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Abstract: Refrigeration cycles are used in a large diversity of industrial and 
domestic (residential and non-residential) equipment and their efficiency depend 
on several variables. To better understanding of how controllable variables impact 
on a compression refrigeration cycle efficiency, statistically designed experiments 
were conducted and data were analyzed. A quadratic polynomial model was fitted 
to Coefficient of Performance and variable settings to maximize cycle efficiency 
identified. Results give confidence to use the illustrated approach for refrigeration 
cycle design and operation improvement purposes.
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1. Introduction
Without proper characterization of process and product, a considerable amount of guesswork about 
which input variables (control factors) have a significant effect on the quality characteristics 
(dependent variable or response) of interest will typically occur. Changing a single control factor 
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while keeping the others fixed is an often-used practice, though it is strongly discouraged. The one-
factor-at-a-time approach offers advantages only in exceptional conditions (Frey & Wang, 2006) so 
it is recommended to use an approach supported by statistical and mathematical techniques that 
has provided unequivocally evidence of its usefulness.

Experimental design and data analysis is an effective and commonly used approach in scientific 
investigations and technological applications in a wide variety of science fields, including in 
mechanical, chemical, and biotechnological engineering. Applications in product design and devel-
opment comprise aircraft engines (Tappeta, Nagendra, & Renaud, 1999), bike-frames (Jeang, Liang, 
& Chung, 2008), copolymers (Ilbay & Çelik, 2009), electric motors (Gijo & Scaria, 2012), desonide 
creams (Lopes, Sarraguça, Prior, & Lopes, 2012), medical devices, and technological processes 
(Dixon, Eatock, Meenan, & Morgan, 2006; Steinberg & Bursztyn, 2010; Vlachogiannis, 2003), to cite 
only a few. In thermodynamic cycles, especially in refrigeration cycles, applications were not found, 
so this approach is illustrated here to investigate the called one stage refrigeration compression 
cycle (hereafter denoted as RC). This cycle has been used in a large diversity of domestic and indus-
trial (residential and non-residential) equipment and explored from a thermodynamic point of view 
(Anand, Gupta, & Tyagi, 2013; Koelet, 1992; Rasmussen, 2012; Rasmussen & Shenoy, 2012; Tassou, 
Lewis, Ge, Hadawey, & Chaer, 2010), namely due to the recent refrigeration fluid restrictions related 
with environment protection as well as to the necessity of improvements in energy efficiency and 
energy savings (Bansal, Vineyard, & Abdelaziz, 2012; Palm, 2008). The objective here was to better 
understanding of how the temperature and the water mass flow rate in both evaporator and con-
denser impacts on RC and maximizing the cycle efficiency, because high-efficiency cycles are char-
acterized by lower energy consumption and better refrigeration effects.

The remainder of the manuscript is organized as follows: Section 2 presents the experimental 
installation, refrigeration cycle principle, and Coefficient of Performance metric; experimental 
design, data analysis, and results are made in Sections 3 and 4, respectively; and conclusions are 
presented in Section 5.

2. RC—Experimental installation
The one stage RC (code: R632/25019) used in this study is a didactic unit produced by P.A. Hilton Ltd 
(see Figure 1). It includes a hermetic compressor (Aspera NEK6214Z), a condenser constructed 
from a thick-walled glass cylinder with machined brass end plates and a coil of copper tube inside 
(through which heating water flows), an evaporator constructed from a thick-walled glass cylinder 
with machined brass end plates and a coil of copper tube inside (through which cooling water 
flows), and an expansion valve (a float operated needle valve situated in the bottom of the con-
denser). The refrigeration fluid is R141b and integrated instrumentation enables to measure the 
condenser and evaporator pressures as well as temperatures in addition to water temperatures 
and flow rates.

Figure 1. Refrigeration cycle.
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The description of the RC can be summarized as follows:

The hermetic compressor maintains a low pressure in the evaporator and this causes the refrigerant 
to evaporate at a low temperature, extracting (sensible) heat from the water and reducing water’s 
temperature. The low-pressure vapor formed in the evaporator is drawn into the compressor where 
its pressure is increased. The high-pressure fluid is then condensed and heat is transferred to the 
water that flows in the condenser. The high-pressure fluid collects in the bottom of the condenser 
and its level is controlled by a float operated expansion valve, which reaches an equilibrium position 
and the fluid discharged to the evaporator at the same rate as it is formed. When the warm fluid at 
high-pressure passes through the valve its pressure decreases to evaporator pressure and its 
temperature falls to the saturation temperature. On entering the evaporator, the low-pressure fluid 
and vapor separate themselves. The fluid is reevaporated, while the vapor mixes with the other vapor 
and passes to the compressor.

Two auxiliary apparatus were built for heating and cooling water in order to set the temperature 
in the inlet and outlet of both the evaporator and condenser at planned values. Hot water was 
produced in a gas burner, stored in a thermo-accumulator tank (SOLCAP-200 litres) to stabilize the 
temperature at specified values, and then pumped to the condenser (see Figure 2). Cold water  
was obtained by introducing ice water in a tank where current water was stored, and then pumped 
to the evaporator at desired temperature (see Figure 3).

Figure 2. Heating water system.
Thermo accumulator tank

Figure 3. Cooling water system.
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2.1. Refrigeration cycle: Coefficient of Performance
Refrigeration cycles are used in a wide variety of fields, for example, in food and pharmaceutical 
industries for product refrigeration and conservation, in health services to keep some medicines at 
low temperature, and in domestic and public rooms as air conditioner systems. To assess RC efficiency 
is required to know the refrigeration and electric powers. Electric power is the rate of energy 
consumption per time supplied to the compressor, which was measured with an analyzer Chauvin 
Arnoux (Qualistar plus CA 8335 - see Figure 1). Refrigeration power is a measure of the heat-
extraction capacity of refrigeration equipments and is calculated by applying the first law of 
thermodynamics to open stationary systems, which states that the total energy of the system 
remains constant. Thus, in RC and under the assumption that heat losses in evaporator are negligible 
and the process is stationary, the energy received by refrigeration fluid from the water in the 
evaporator is equal to the energy transferred (released) by water to the refrigeration fluid.

Considering the schematic representation of inputs and outputs (energy and mass balance) in the 
evaporator (region delimited by the dash line) shown in Figure 4, refrigeration power (Q̇evap) can be 
defined as

 

Notation and variable units are as follows:

Q̇evap—Refrigeration power (W); ṁwater—Water mass flow rate in evaporator (kg/s); Cpwater—
Specific heat of water at constant pressure (4.18 kJ/kgK); Tevap—Inlet water temperature in the evap-
orator (°C); Toutevap—Outlet water temperature in the evaporator (°C).

The ratio between the Refrigeration (Q̇evap) and Electric (Ẇelect) powers is a metric used currently 
to assess the refrigeration cycles efficiency (Dabas, Dodeja, Kumar, & Kasana, 2011; Dincer, 2004; 
Mackensen, Klein, & Reindl, 2002; Pfister, 2004). This metric is called Coefficient of Performance 
(COP) and is defined as

 

The higher the COP value is, the better cycle efficiency will be, which can be achieved by reducing 
energy consumption and increasing the refrigeration power (Dincer, 2004). COP values of com-
pression refrigeration cycles used in domestic and industrial refrigeration vary from 1 up to 3 
(Bjork, 2012). For small didactic cycles like this one used in the study reported here, the expected 
COP value will be equal to or slightly higher than 1. These units have demonstration and didactic 
purposes so its components do not have the best technical characteristics. For instance, the 
evaporator and condenser are made in glass, with very low heat transmission capacity, and the 
power of the compressor is not as high as that of compressors used in industrial or domestic 
equipment. As a result, refrigeration power and cycle performance values are not as high as 
desired.

(1)Q̇evap= ṁwater Cpwater (Toutevap−Tevap)

(2)
COP=

Q̇evap

Ẇelect

Figure 4. Evaporator: control 
volume.
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3. Design of experiments
Design and conduct experiments are not trivial tasks, though various authors have presented 
guidelines to help researchers and practitioners in planning, conducting, and analyzing data of 
experimental studies (Bisgaard, 1999; Coleman & Montgomery, 1993; Costa, Pires, & Ribeiro, 2006; 
Freeman, Ryan, Kensler, Dickinson, & Vining, 2013; Simpson, Listak, & Hutto, 2013; Tanco, Costa, & 
Viles, 2009). A careful management of statistical and non-statistical issues is crucial to successful 
case studies. For instance, experimental design selection is a critical activity, because using an 
inappropriate experimental design is sure to compromise study conclusions. To avoid spending time 
and effort running inappropriate experiments, Tanco et al. (2009) focused on experimental design 
selection, highlighting various key points and providing guidelines to help practitioners in selecting 
experimental designs that were validated based on examples from the literature.

To explore the relationship between dependent variable (COP) and four independent variables 
(or  control factors) of the didactic unit that impact on RC efficiency, namely the inlet water  
temperature in condenser (Tcond), inlet water temperature in evaporator (Tevap), water mass flow in 
the evaporator (ṁevap), and water mass flow in condenser (ṁcond), a face-centered design (FCD) 
was selected. This experimental design consists of a two-level full factorial design (24 = 16 experi-
ments), eight star points and four center points, which allow to estimate linear and non-linear terms 
that can be used for modeling the COP variable (response). The four center points are enough to 
produce the required design variance stability because the region delimited by factors range repre-
sents both the region of  interest and the region of operability. Supported on authors’ expertise, 
preliminary experimental results (trial runs), and to simulate as much as possible real-life operating 
conditions of RC, factor levels (in coded and non-coded values) were set as displayed in Table 1. 
Experimental design (Matrix of experiments) is displayed in Table 2. Further information about FCD 
and other designs can be found in classical books about Design of Experiments or Response Surface 
Methodology (Box, Hunter, & Hunter, 2005; Khuri & Mukhopadhyay, 2010; Myers, Montgomery, & 
Anderson-Cook, 2009).

4. Data analysis and results
The designed experiments were run in the thermodynamic laboratory of Setubal Polytechnic Institute—
ESTSetubal, without any order (randomly), and the response results are displayed in Table 2. This data 
were analyzed using the software package STATISTICA® and a second-order model fitted to COP based 
on analysis of variance (ANOVA) results. The estimated regression coefficients are displayed in Table 3, 
and the model fitted to COP, after sent to the ANOVA error term some non-significant variables/
interactions, is as follows:

where xi (−1≤xi ≤1 for i=1,… ,4) denotes the coded label of the ith independent variable.

This model shows good descriptive ability (R2 = 0.934; Adjusted R2 = 0.915; MS Residual = 0.005), 
and graphical residual analysis presented in Figures 5–7 does not provide evidences of ANOVA 
assumptions (residuals Normality, Independence, and Homoscedasticity) violation. It includes 
statistically significant linear and quadratic terms, namely an interaction term, and one can see that  
x3 (Tevap) is the most important one to maximize COP, and has the biggest coefficient has the biggest 
coefficient (0.2539). In practice, the greater Tevap value is, the higher cycle efficiency (COP value) will 

𝜇̂=0.8767+0.2539 x3+0.0791 x4+0.0745 x
2
1+0.0776 x

2
2−0.1675 x

2
3−0.0305 x1x4

Table 1. Variable settings
Level Coded value Tcond (°C) ṁ

cond
 (g/s) Tevap (°C) ṁ

evap
 (g/s)

Maximum 1 35 30 24 30

Center point 0 30 20 17 20

Minimum −1 25 10 9 10
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Figure 5. Normal probability 
plot.
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Table 2. Matrix of experiments and results
Standard order of runs Tcond (°C) ṁ

cond
 (g/s) Tevap (°C) ṁ

evap
 (g/s) COP Ẇ

elect
 (W)

1 Full factorial design 25 10 9 10 0.5482 183

2 25 10 9 30 0.6778 185

3 25 10 24 10 0.9038 185

4 25 10 24 30 1.3412 187

5 25 30 9 10 0.5618 186

6 25 30 9 30 0.6706 187

7 25 30 24 10 0.9541 184

8 25 30 24 30 1.2135 186

9 35 10 9 10 0.5471 191

10 35 10 9 30 0.7184 192

11 35 10 24 10 1.1270 204

12 35 10 24 30 1.1082 215

13 35 30 9 10 0.4815 191

14 35 30 9 30 0.6464 194

15 35 30 24 10 1.1053 208

16 35 30 24 30 1.2422 212

17 Star points 25 20 17 20 0.9388 187

18 35 20 17 20 0.9289 198

19 30 10 17 20 0.8633 184

20 30 30 17 20 1.0105 182

21 30 20 9 20 0.4619 181

22 30 20 24 20 0.8894 188

23 30 20 17 10 0.8663 193

24 30 20 17 30 0.9003 195

25 Center points 30 20 17 20 0.9192 191

26 30 20 17 20 0.9137 183

27 30 20 17 20 0.9187 182

28 30 20 17 20 0.9731 189
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be, though the quadratic effect of Tevap (x
2
3) has a negative influence on COP value since its coefficient 

is lower than zero. The interaction term x1x4 (Tcond × ṁevap) is significant, but its coefficient is smaller, 
in absolute value, than all the other coefficients of the model fitted to COP. These experimental 
results are in accordance with the theoretical knowledge, since it is known that evaporator 
temperature has significant impact on COP (Kilicarslan & Mülle, 2004).

To achieve the highest COP value and respective optimal coded values xi, Solver optimization tool 
available in Excel® was used. The achieved COP value, slightly higher than 1 (COP = 1.23) for xi = (−1, 
1, 0.76, 1), is not surprising, taking into account the installation used here (Bjork, 2012). The 
performance of current refrigeration systems is, in fact, higher since they integrate components of 
higher quality (with better technical characteristics). The achieved COP value is low from a theoretical 
point of view. However, this does not mean that experimental methodology and study results are of 
no interest or unhelpful. One can’t ignore that small didactic units are not designed or developed 
with efficiency purposes. They are a valuable teaching aid for students, from craft and technician 
training at Polytechnics and Universities, and are used to help them in visualizing and understanding 
the events within the various components.

Figure 6. Residuals vs. predicted 
values.
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Figure 7. Residuals vs. run 
order.
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To validate the COP value obtained from the optimization process (COP = 1.23), two confirmatory 
experiments with variable settings at optimal values were run. Experimental runs and results are 
displayed in Table 4, and one can see that COP values are in agreement with those achieved from the 
optimization of model fitted to COP. Thus, one can argue that experimental methodology illustrated 
here was helpful to better understand the influence of selected control factors on refrigeration cycle 
performance.

5. Conclusions
Statistically designed experiments were performed and results analyzed with the objective of  
maximizing the efficiency of a compression refrigeration cycle, using a small didactic installation. A 
second-order model was fitted to Coefficient of Performance and considerable benefits result from 
it. Besides it expresses the functional relationship between design variables and the response, the 
model provides an estimate of the response at any point within the experimental region, which is 
useful for refrigeration cycle design and operation improvement purposes. Results show that, except 
for the inlet water temperature in the condenser, which must be set at low level, the remaining  
variables must be set at high level or close of it to maximize the cycle performance. Confirmatory 
experiments corroborated these results.

The design and analysis of experiments to investigate refrigeration cycles is a novel approach in 
thermodynamics and results give confidence to use this approach for refrigeration cycle design and 
operation improvement purposes. Therefore, as future research, we plan to apply this methodology 
in domestic and industrial equipment as well as in other thermodynamic cycles. Simultaneous opti-
mization of models fitted to refrigeration and electric power responses is another alternative optimi-
zation strategy to maximize refrigeration cycle efficiency. To test other refrigeration fluids and 
compressor types can also be considered in future research studies.

Table 4. Confirmatory experiments
Tcond (°C) ṁ

cond
 (g/s) Tevap (°C) ṁ

evap
 (g/s) COP Ẇ

elect
 (W)

25 30 22.5 30 1.13 188

25 30 22.5 30 1.10 183

Table 3. Estimated regression coefficients
Term Coeff. Std. Error t(13) p

Mean/Interc. 0.8751 0.0285 30.696 0.000

x1 Tcond 0.0052 0.0194 0.267 0.794

(x2
1
) Tcond × Tcond 0.0691 0.0512 1.350 0.200

x2 ṁWcond 0.0028 0.0194 0.142 0.889

(x2
2
) ṁcond × ṁcond 0.0722 0.0512 1.409 0.182

x3 Tevap 0.2539 0.0194 13.097 0.000

(x2
3
) Tevap × Tevap −0.1729 0.0515 −3.360 0.005

x4 ṁevap 0.0790 0.0194 4.073 0.001

x2
4

ṁevap × ṁevap 0.0186 0.0512 0.363 0.722

x1x2 Tcond × ṁcond 0.0028 0.0206 0.138 0.892

x1x3 Tcond × Tevap 0.0146 0.0206 0.710 0.490

x1x4 Tcond × ṁevap −0.0301 0.0206 −1.461 0.168

x2x3 ṁcond × Tevap 0.0110 0.0206 0.534 0.602

x2x4 ṁcond × ṁevap −0.0031 0.0206 −0.151 0.883

x3x4 Tevap × ṁevap 0.0145 0.0206 0.705 0.493

Notes: R2 = 0.941; Adj R2 = 0.877; MS Residual = 0.007.
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